• Type Ia Supernovae

    TYPE IA SUPERNOVAE

    High resolution models of turbulent flames.

  • Core-Collapse Supernovae

    CORE-COLLAPSE SUPERNOVAE

    State-of-the-art neutrino radiation hydrodynamics.

  • Compact Object Mergers

    COMPACT OBJECT MERGERS

    SPH simulations of binary mergers.

TRANSIENT EMISSION MODELING

Codes

CTA scientists use a variety of codes to model radiation transport. Some are in open repositories and we hope to make more available.

  • Semi-Analytic

  • Code reference
  • Semi-Analytic is 1-temperature diffusion code running on top of homologous outflows. This code is very quick and can run large grids of models to get first pass light-curves.
  • Spectrum + RAGE

  • Code reference
  • Spectrum is a post-process spectra code using LANL opacities and building upon the radiation-hydrodynamics code (RAGE) at LANL. This set of codes are ideal for problems where shock heating is important.
  • SuperNu

  • Code link, Code reference
  • SuperNu is a program for simulating time-dependent radiation transport in local thermodynamic equilibrium with matter. It applies the methods of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) for static or homologously expanding spatial grids. The radiation field affects material temperature but does not affect the motion of the fluid. SuperNu may be applied to simulate radiation transport for supernovae with ejecta velocities that are not affected by radiation momentum. The physical opacity calculation includes elements from Hydrogen up to Cobalt. SuperNu is motivated by the ongoing research into the effect of variation in the structure of progenitor star explosions on observables: the brightness and shape of light curves and the temporal evolution of the spectra. Consequently, the code may be used to post-process data from hydrodynamic simulations. SuperNu does not include any capabilities or methods that allow for non-trivial hydrodynamics.

DATA

CTA scientists are engaged in a wide variety of projects, producing different data sets. The links below download tar files of this data. The tar files typically contain light curves and spectra for the described models. Models are listed in order of creation date.

Publications

CTA scientists are engaged in a wide variety of projects, producing different data sets. The links below download tar files of this data:

  • Composition Effects on Kilonova Spectra and Light Curves: I
  • Even, Wesley; Korobkin, Oleg; Fryer, Christopher L.; Fontes, Christopher J.; Wollaeger, R. T.; Hungerford, Aimee; Lippuner, Jonas; Miller, Jonah; Mumpower, Matthew R.; and Misch, G. Wendell
  • Serendipitous discoveries of kilonovae in the LSST main survey: maximizing detections of sub-threshold gravitational wave events
  • Setzer, Christian N.; Biswas, Rahul; Peiris, Hiranya V.; Rosswog, Stephan; Korobkin, Oleg; Wollaeger, Ryan T.
  • Impact of Pulsar and Fallback Sources on Multifrequency Kilonova Models
  • Wollaeger, Ryan T.; Fryer, Chris L.; Fontes, Christopher J.; Lippuner, Jonas; Vestrand, W. Thomas; Mumpower, Matthew R.; Korobkin, Oleg; Hungerford, Aimee L.; and Even, Wesley P.
  • Synthetic Spectra of Pair-instability Supernovae in 3D
  • Chatzopoulos, E.; Gilmer, Matthew S.; Wollaeger, Ryan T.; Fröhlich, Carla; and Even, Wesley P.
  • Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers
  • Wollaeger, Ryan T.; Korobkin, Oleg; Fontes, Christopher J.; Rosswog, Stephan K.; Even, Wesley P.; Fryer, Christopher L.; Sollerman, Jesper; Hungerford, Aimee L.; van Rossum, Daniel R.; Wollaber, Allan B.
  • Californium-254 and Kilonova Light Curves
  • Zhu, Y.; Wollaeger, R. T.; Vassh, N.; Surman, R.; Sprouse, T. M.; Mumpower, M. R.; Möller, P.; McLaughlin, G. C.; Korobkin, O.; Kawano, T.; Jaffke, P. J.; Holmbeck, E. M.; Fryer, C. L.; Even, W. P.; Couture, A. J.; and Barnes, J.
  • Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
  • Evans, P. A.; Cenko, S. B.; Kennea, J. A.; Emery, S. W. K.; Kuin, N. P. M.; Korobkin, O.; Wollaeger, R. T.; Fryer, C. L.; Madsen, K. K.; Harrison, F. A.; Xu, Y.; Nakar, E.; Hotokezaka, K.; Lien, A.; Campana, S.; Oates, S. R.; Troja, E.; Breeveld, A. A.; Marshall, F. E.; Barthelmy, S. D. Beardmore, A. P.; Burrows, D. N.; Cusumano, G.; D'Aì, A.; D'Avanzo, P.; D'Elia, V.; de Pasquale, M.; Even, W. P.; Fontes, C. J.; Forster, K.; Garcia, J.; Giommi, P.; Grefenstette, B.; Gronwall, C.; Hartmann, D. H.; Heida, M.; Hungerford, A. L.; Kasliwal, M. M.; Krimm, H. A.; Levan, A. J.; Malesani, D.; Melandri, A.; Miyasaka, H.; Nousek, J. A.; O'Brien, P. T.; Osborne, J. P.; Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Pike, S.; Racusin, J. L.; Rosswog, S.; Siegel, M. H.; Sakamoto, T.; Sbarufatti, B.; Tagliaferri, G.; Tanvir, N. R.; and Tohuvavohu, A.
  • The X-ray counterpart to the gravitational-wave event GW170817
  • Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R. T.; Im, M.; Fox, O. D.; Butler, N. R.; Cenko, S. B.; Sakamoto, T.; Fryer, C. L.; Ricci, R.; Lien, A.; Ryan, R. E.; Korobkin, O.; Lee, S. -K.; Burgess, J. M.; Lee, W. H.; Watson, A. M.; Choi, C.; Covino, S. D'Avanzo, P.; Fontes, C. J.; González, J. Becerra; Khandrika, H. G.; Kim, J.; Kim, S. -L.; Lee, C. -U.; Lee, H. M.; Kutyrev, A.; Lim, G.; Sánchez-Ramírez, R.; Veilleux, S.; Wieringa, M. H.; Yoon, Y.
  • The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
  • Tanvir, N. R.; Levan, A. J.; González-Fernández, C.; Korobkin, O.; Mandel, I.; Rosswog, S.; Hjorth, J.; D'Avanzo, P.; Fruchter, A. S.; Fryer, C. L.; Kangas, T.; Milvang-Jensen, B.; Rosetti, S.; Steeghs, D.; Wollaeger, R. T.; Cano, Z.; Copperwheat, C. M.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A. Evans, P. A.; Even, W. P.; Fairhurst, S.; Figuera Jaimes, R.; Fontes, C. J.; Fujii, Y. I.; Fynbo, J. P. U.; Gompertz, B. P.; Greiner, J.; Hodosan, G.; Irwin, M. J.; Jakobsson, P.; Jørgensen, U. G.; Kann, D. A.; Lyman, J. D.; Malesani, D.; McMahon, R. G.; Melandri, A.; O'Brien, P. T.; Osborne, J. P.; Palazzi, E.; Perley, D. A.; Pian, E.; Piranomonte, S.; Rabus, M.; Rol, E.; Rowlinson, A.; Schulze, S.; Sutton, P.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Wijers, R. A. M. J.
  • Light Curves and Spectra from a Unimodal Core-collapse Supernova
  • Wollaeger, Ryan T.; Hungerford, Aimee L.; Fryer, Chris L.; Wollaber, Allan B.; van Rossum, Daniel R.; Even, Wesley

PEOPLE

 CHRIS FRYER

DIRECTOR
LANL FELLOW, COMPUTATIONAL PHYSICS & METHODS, CCS-2

Radiation-hydrodynamics, reaction networks

 WES EVEN

DEPUTY DIRECTOR: CAREER DEVELOPMENT
R&D SCIENTIST, COMPUTATIONAL PHYSICS & METHODS, CCS-2

Transient light curves, compact mergers, supernovae, nucleosynthesis

 NICOLE LLOYD-RONNING

DEPUTY DIRECTOR: OUTREACH
R&D SCIENTIST, COMPUTATIONAL PHYSICS & METHODS, CCS-2

Gamma-ray bursts, their emission physics, and their use as cosmological tools

 AIMEE HUNGERFORD

PROGRAM LIAISON
R&D SCIENTIST, COMPUTATIONAL PHYSICS, XCP

Gamma-ray astronomy, supernovae, Monte Carlo transport

 CHRIS FONTES

R&D SCIENTIST, MATERIALS & PHYSICS DATA, XCP-5

Theoretical atomic physics, radiative opacities, transient light curves

 OLEG KOROBKIN

R&D SCIENTIST, APPLIED COMPUTER SCIENCE, CCS-7

Neutron star mergers, r-process, hydrodynamics, HPC, general relativity

 ZACH MEDIN

R&D SCIENTIST, EULERIAN CODES, XCP-2

X-ray bursts

 RYAN WOLLAEGER

R&D SCIENTIST, COMPUTATIONAL PHYSICS & METHODS, CCS-2

Transient light curves, radiation transport methods

 DANIEL HOLLADAY

POSTDOC, EULERIAN CODES, XCP-2

nLTE opacities, radiation transport, HPC, heterogeneous computing